Study on the Evaluation of Mine Environmental Sustainable Development Based on Fuzzy Petri Nets Chao Zheng^{1, a, *}, Changbo Pan², Lan Yu¹, Jufeng Zhang^{1, 3, b}, Fengfeng Yang¹, Rili Yang¹ ¹School of Energe Engineering, Longdong University, Qingyang 745000, china ²Gansu Energy Qingyang Coal and Electricity Corporation Ltd., Qingyang 745000, china ³School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China ^a513242367@qq.com, ^b422622510@qq.com *Keywords:* Mine environment, Fuzzy Petri Net, Sustainable Development, Evaluation model **Abstract:** To evaluate the sustainable development of mine environment, fuzzy Petri nets and variable weight theory were introduced into the study of sustainable development of mine ecological environment. Based on the self-purification and repair functions of the environmental system, a fault tree model of mine environmental pollution was constructed, and the fault tree model was transformed into a mine pollution model based on fuzzy Petri nets. Finally, an inference algorithm and evaluation method based on the fuzzy Petri net model were described. It provides a theoretical basis for the sustainable development evaluation of the mine environment. #### 1. Introduction The scale mining of mineral resources provides the basic guarantee for the development of the national economy, but the environmental damage and pollution caused cannot be neglected. The development of "green mines" has become the basic goal of today's mine construction, and its core is to achieve the sustainable development of resources and the environment. Due to the large number of elements of the mine environment system, the wide range of impact, the complex relationship, and the difficulty in obtaining evaluation data, the analysis of the reliability and safety of such systems has become increasingly difficult[1-3]. Therefore, it is extremely necessary to establish a scientific and reliable mine environmental quality evaluation system, accurately measure the level of sustainable development of the mine, and be able to analyze, analyze and propose measures[4-5]. #### 2. Fault Tree Analysis of Mine Environment Risk Fuzzy #### 2.1 Purification and repair of contaminants in the atmosphere Purification links $A_{11} \cap A_{12}$ indicate that the pollution load control of the mining area meets the secondary standards of the "Ambient Air Quality Standard". The purification link $(A_{21} \cap A_{23}) \cup$ Published by CSP © 2018 the Authors DOI: 10.23977/msmee.2018.72106 $(A_{22} \cap A_{23})$ indicates that the pollutants in the mining area are effectively diluted and diffused in the atmosphere. $A_{21} \cap A_{23}$ indicates that the prevailing purging conditions meet certain requirements, and $A_{22} \cap A_{23}$ indicate that the prevailing purifying conditions meet certain requirements. The repair links A_{31} and A_{32} indicate that the pollutants in the air of the mining area are absorbed and enriched by functional vegetation (A_{31}) or are converted into non-toxic or low-toxic substances (A_{32}) by optical action. The conditions meet the requirements. # 2.2 Purification and repair of pollutants in soil of coal mining area Decontamination process $B_{11} \cap B_{12}$ indicates that the control of organic pollutants B_{11} and inorganic pollutants B_{12} in the soil of the mining area meets the three-level standard of *Soil Environmental Quality Standard. Decontamination* $(B_{21} \cap B_{22}) \cup (B_{23} \cap B_{24}) \cup (B_{25} \cap B_{26})$ indicates that the pollutants in the soil solution are separated, diffused, absorbed, decomposed, and converted. The repair links B_{31} and B_{32} indicate that the destroyed vegetation is in good condition. # 2.3 Purification and repair of pollutants in mine water Purification links C_{11} to C_{12} indicate that the control of harmful substances in the water complies with relevant environmental quality standards. Among them, C_{11} and C_{12} are the surface water and groundwater quality that meet the Class III standards of *Surface Water Environmental Quality Standard and Groundwater Environmental Quality Standard*. Decontamination $(C_{21} \cap C_{22}) \cup (C_{23} \cap C_{24}) \cup (C_{25} \cap C_{26})$ indicates that the contaminants in the water environment system have good diffusion, diffusion, decomposition, and absorption and enrichment conditions. State C_{31} indicates the equilibrium of groundwater in the mining area, that is, the replenishment and excretion of groundwater should be balanced. # 2.4 Fault tree of mine environmental pollution According to the low sustainability of the mine environment as the top event of the fault tree, according to the series and parallel relationship between the various cleaning links, the layered layer decomposition, the establishment of the mine pollution of the fault tree shown in Figure 1. Fig. 1 Mine environment pollution fault tree model ### 3 The Construction of Fuzzy Variable Weighted Petri Net Model # 3.1 The composition of the model The model of mine environmental pollution based on fuzzy Petri nets is nine-tuple: (P, R, Δ , Γ , CF, Θ , γ , I, τ): - (1) $P=\{p_1, p_2,...,p_n\}$ is a finite set of propositional descriptions of mine ecological environmental pollution states (factors). Each proposition corresponds to a library in a Petri net, proposition set P and fault tree model events. Set A one to one correspondence; - (2) $R = \{r_1, r_2, ..., r_m\}$ is a finite set of regularized descriptions of events that result in failure of the system cleanup and repair process. Each rule $r_i(i=1,2,...,m)$ corresponds to a Petri net. One of the transitions $t_i(i=1,2,...,m)$; - (3) $\Delta = \{\delta_{ij}\}\$, where i=1,2,...,n, j=1,2,...,m, $\delta_{ij} \in [0,1]$ denote the input of the transition t_j from the proposition p_i to the rule r_j intensity, that is, the size of the contribution made by the event p_i when the rule r_j is established, n (n is a positive integer) The sum of the weights when the libraries point to the same transition is 1, which is a known quantity. $\delta_{ij} = \begin{cases} 0 & p_i \notin t_j \\ (0,1] & p_i \in t_j \end{cases}$; - (4) $\Gamma = \{c_{ji}\}\$, where j = 1, 2, ..., m, i = 1, 2, ..., n, $c_{ji} \in [0, 1]$, whose value represents the transition t_j corresponding to the rule r_j to the library The output intensity of the p_i , that is, the degree of event p_i is promoted after the rule r_j is established, and the sum of the output intensities when the same transition points to n (n is a positive integer) is also a known quantity, among them, $c_{ji} = \begin{cases} 0 & p_i \neq i \\ (0,1) & p_i \neq i \end{cases}$. - (5) $CF = \operatorname{diag}(f_1, f_2, ..., f_m)$, $f_j \in [0,1]$ is the credibility of the rule r_j , that is, the degree of confidence that the rule r_j corresponds to the transition t_j ; - (6) $\Theta = (\theta_1, \theta_2, ..., \theta_n)^T$, $\theta_i \in [-1,1]$, i=1,2,...,n, is the truth degree of the proposition p_i , that is, p_i corresponds to the corresponding event in the set A Possibility of happening. The value of θ_i [-1,0) indicates that p_i has an inhibitory effect on pollution of the mining environment ($p_i \in U^-$), and the value (0,1) indicates that p_i plays a promoting role($p_i \in U^+$), and the value {0} indicates The role of p_i is uncertain($p_i \in U^+$). The degree of truth of each leaf bank is the probability of occurrence of the basic event in A, and Θ_0 is the initial trueness vector; - (7) Marker vector for the presence or absence of the proposition $p_i(i=1,2,...,n)$ in P, $\gamma = (\gamma_1, \gamma_2, ..., \gamma_n)^T$. Among them, indicates that p_i exists, that is, the represented event may occur; indicates that p_i does not exist, that is, the represented event cannot occur. γ_0 is the initial marker vector; - (8) $I: P \times R \to \{0,1\}$ is an $n \times m$ dimension matrix, indicating that there is a connected arc to the transition from the library. If there is a connection arc from p_i to r_j , then $I(p_i, r_j)=1$; otherwise, $I(p_i, r_j)=0$; where i=1,2,...,n, j=1,2,...,m; - (9) τ is a critical value of the evolution of the inference rule, which represents the minimum probability of occurrence of the event p_i . Based on the theory of variable weight[7], for any library $p_i \in S^+$ or $p_i \in S^-$, if $0 < \theta_i < \tau$ or $-\tau < \theta_i < 0$, the event p_i does not occur, then the proposition is evolved and the degree of truth is $|\theta_i| < \tau$ The library p_i evolves to its no-proposition bank, and the link weight δ_{ij} from transition to transition should also be modified accordingly. #### 3.2 The construction of fuzzy Petri net evaluation model The construction of the mine environment pollution fuzzy Petri net model is to transform mine environmental pollution fault tree into fuzzy Petri net representation and construct reasoning and solving rules. As can be seen from FIG. 1, the fault tree model has only AND (or gate) and OR (or gate) relationships, and the fuzzy Petri net transformation of the AND gate is shown in Figure. 2. Based on the above-mentioned conversion rules and the definition of the model, the model of Figure 1 is converted to the mine environment pollution fuzzy Petri net model shown in Figure 3. Fig. 2 Transformation of Fuzzy Petri net Fig. 3 Fuzzy Petri net # 4. Model Inference Algorithm and Evaluation Process # 4.1 How to calculate the degree of reality of events under two rules In any fuzzy Petri net, t_j is the transition corresponding to a certain rule, P is the previous set library of $t_j[8]$, where the input strength of $p_i \in P$ to t_j is δ_{ij} , (i=1,2,..., n, then the equivalent fuzzy input confidence E_j of t_j is: $$E_{j} = \sum_{i=1}^{n} \theta_{i} \delta_{ij} \tag{1}$$ (1) Rule 1. IF p_{i1} and p_{i2} and p_{i3} and ... and p_{in} THEN p_k , after the transition ri(i=1,2,...,n) is stimulated, the truth degree θ_k of the result proposition p_k is: $$\theta_k = (\sum_{i=1}^n \theta_i \delta_{ij}) f_j \gamma = E_j f_j \gamma \tag{2}$$ (2) Rule 2. IF p_{i1} or p_{i2} or p_{i3} or ... or p_{in} THEN p_k , after the transition $r_i(i=1,2,..,n)$ is stimulated, the truth degree θ_k of the result proposition p_k is: $$\theta_k = \operatorname{Max}(\theta_1 \delta_1 f_1 \gamma_{1k}, \theta_2 \delta_2 f_2 \gamma_{2k}, \dots, \theta_n \delta_n f_n \gamma_{nk}) = \operatorname{Max}(E_1 f_1 \gamma_{1k}, E_2 f_2 \gamma_{2k}, \dots, E_n f_n \gamma_{nk})$$ (3) # 4.2 Construction model reasoning algorithm In the model, P and R are state proposition sets and behavior rule sets, respectively, where |P|=n,|R|=m. Let the equivalent fuzzy input confidence of each transition in the model be $E=(e_1,e_2,...,e_m)^T$. The reasoning algorithm is as follows: Step1 Initialize Θ , CF, Δ , Γ , I, γ , τ , set k=1; Step2 judge according to the trigger rule of the transition, if it is the case 1, go to Step3; if it is the case 2, then execute Step4; Step3 Calculate the degree of authenticity of the output library after the transition excitation based on rules 1 and 2 and update the truth degree set Θ ; go to Step 8; Step4: Perform rule evolution and change of weights, calculate the trueness θ_i and weight of the p_i after variable weight processing δ'_{ik} , and obtain a new trueness set and input intensity matrix Θ'_k , Δ' [6]; Step5 Calculate the evolutionary equivalent fuzzy input credibility from equation (1) and obtain a new proposition trueness set [9]. $$\Theta_{k}^{"} = \Gamma^{\mathsf{T}} \otimes (E_{k}^{\mathsf{T}} CF)^{\mathsf{T}} \tag{4}$$ Step6 Calculate the new round of authenticity to ensure that the absolute value of the trueness of the proposition corresponding to the library is not reduced; $$\Theta_{k} = \Theta_{k}^{"} \oplus \Theta_{k}^{'} \tag{5}$$ Step7 Update flag vector γ_k : If the transition r_j triggers, the flag value of the succeeding library closest to the transition r_j is set to 1, otherwise it is set to 0; Step8 when $\Theta_k = \Theta_{k-1}$, reasoning is over, and assignment $\Theta = \Theta_k$; otherwise, go to Step9; Step9 set k = k + 1, go to Step2[10]. # 4.3 Evaluation of sustainable development of mine ecological environment Based on the propositional truth degree Θ obtained by the above inference algorithm, each trueness value Θ is divided into two cases: $\tau \leq \theta_i \leq 1$ or $-1 \leq \theta_i \leq -\tau$. In order to facilitate the assessment of the degree of sustainable development, the formula (6) will be converted to the corresponding sustainable development value v_i of each subsystem, The value of v_i represents the sustainable development and development level, and $v_i \geq 0.6$ is the intermediate sustainable development level. Stronger sustainability. Based on this, we will make an assessment of the sustainable development level of each subsystem and the entire mine ecological environment, and make a reason analysis and provide feedback. $$v_{i} = \begin{cases} 1 - \theta_{i} & \theta_{i} \ge \tau \\ |\theta_{i}| & \theta_{i} \le -\tau \end{cases}$$ (6) #### 5. Conclusion Based on the self-purification and restoration functions of the environmental system, this paper establishes a fault tree model of mine wastewater, harmful gases and solid waste, and introduces the fuzzy Petri net and variable weight theory into the study of the sustainable development of mine ecological environment. At the same time, the fault tree model is transformed into the mine pollution model of the fuzzy Petri net. Finally, the inference algorithm and evaluation method based on the fuzzy Petri net model are described. The sustainable development and continuous level of the mine's ecological environment are evaluated through the mine ecological environment sustainability value. # Acknowledgments This work was financially supported by 2018 Gansu Provincial Safety Science and Technology Project [GAJ00017] and Longdong University Youth Science & Technology Innovation Project [XYZK1611] fund. #### References [1] Wei Yufeng, Kan Shulin, Ren Yizhou. Petri nets-based fault tree analysis method for complex manufacturing systems[J]. Machinery Design & Manufacture, 2010, (7):34-39. [2] V.E. Johnson, A. Moosman, P. Cotter.A Hierarchical Model for Estimating the Early Reliability of Complex Systems. Transaction on Reliability, vol, 2005, 54(2):224-228. [3] S.K. Chen, T.K. Ho, B.H. Mao. Reliability evaluations of railway power supplies by fault-tree analysis. IET Electr. Power, Appl, 2007, 1(2):161-172. - [4] B. Gollomp. Quality and Reliability Facilitator-FMEA. Instrumentation & Measurement Magazine. Volume 11, Issue 2, April, 2008 Page(S):58-59. - [5] Huang Guangqiu, Zhu Huaping, Zheng Yanquan. Study on Fuzzy A nalysis of Accidents Based on Fuzzy Petri Net from Fault Tree[J]. Journal of Hunan University of Science & Technolog. 2006,21(2):34-39. - [6] Jang Zhibin. Petri-net and Its Application in Manufacture System Modeling and Control [M]. Beijing: China Machine Press 2004. - [7] Lin Lizhong, Zhu Bin. Study on a New Model of Regional Environmental Air Quality Risk Assessment Based on Reliability Theory[J]. China Population, Resources and Environment, 2006,16(1):62-65. - [8] Huang Guangqiu, Wang Jincheng. Consistent varying-weight fuzzy Petri net attack model based on both-branch fuzzy set[J]. Journal of Computer Applications, 2009, 29(2):529-534. - [9] Lu Qiuqin, Liu Haozheng, Duan Wenqiang. Study on Tenderee Trust Risk Evaluation Model Based on Fuzzy Petri Net[J]. Zhengzhou Univercity, (Nat, Sci, Ed),2014, (1):120-125. - [10] Wang Yang, Lin Chuang, Qu Yang, Li Yajuan. Consistent Fuzzy Petri Nets Model for Logic Programs with Negation[J]. ACTA ELECTRONICA SINICA, 2006,34(11):1955-1960.